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Abstract— We address the problem of deciding stability of
a “black-box” dynamical system (i.e., a system whose model is
not known) from a set of observations. The only assumption
we make on the black-box system is that it can be described
by a switched linear system.

We show that, for a given (randomly generated) set of
observations, one can give a stability guarantee, for some level
of confidence, with a trade-off between the quality of the
guarantee and the level of confidence. We provide an explicit
way of computing the best stability guarantee, as a function
of both the number of observations and the required level
of confidence. Our results rely on geometrical analysis and
combine chance-constrained optimization theory with stability
analysis techniques for switched systems1.

I. INTRODUCTION

The problem of determining the stability of a given dy-
namical system has captured the control theory community’s
attention for decades. The most common approach to this
problem is to start by assuming a model for the dynamical
system to be analyzed. Yet, for industrial scale systems, even
this first step is hard to establish. Cyber-physical systems are a
good example to illustrate why this is the case. These systems
are characterized by intricate and complex interactions of
a large number of heterogeneous components. For example,
while a physical component is modeled by a differential
equation, a computational component might be modeled by
a difference equation, a hybrid automaton or even a lookup
table. Therefore, for control engineers, it is common practice
to rely on simulations instead of closed-loop models to gain
confidence in a given design. For the rest of the paper, we
consider black-box systems, i.e., systems where we do not
have access to the model, f . We can still indirectly learn
information about f by observing pairs of points (xk, yk)
as defined in (1). In this paper, we look at stability analysis
with this reality in mind and ask the question: Can we give
formal guarantees on the stability of a system based on the
information obtained via its simulation?

Formally, we consider a dynamical system as in:

xk+1 = f(k, xk), (1)
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where, xk ∈ X is the state and k ∈ N is the time index. We
consider N pairs, (x1, y1), (x2, y2), . . ., (xN , yN ) belonging
to the behavior of the system (1), (i.e., yk = f(k, xk) for
some k), and try to assess the stability of the system (1). We
assume that our observations are not correlated, that is, they
are made for different runs of the system. As the system is
homogeneous, the time k at which the observation is done is
not relevant for our problem of stability analysis.

A straightforward attempt to solve this problem would be to
first identify the dynamics, i.e., the function f , and then apply
existing techniques from the model-based stability analysis
literature. However, unless f is a linear function, there are
two main reasons behind our quest to directly work on system
behaviors and bypass the identification phase: 1) Even when
the function f is known, in general, stability analysis is a very
difficult problem; 2) Identification can potentially introduce
approximation errors, and can be algorithmically hard as well.
Note that, both these problems are well-known to exist in
the particular case of switched systems [3], [15]. A fortiori,
the combination of these two steps in an efficient and robust
way seems suboptimal, if only feasible.

In recent years, an increasing number of researchers started
addressing various verification and design problems in control
of black-box systems [1], [2], [9]–[11]. In particular, the
initial idea behind this paper was influenced by the recent
efforts in [13], [22], and [4] on using simulation traces to
find Lyapunov functions for systems with known dynamics.
In these works, the main idea is that if one can construct a
Lyapunov function candidate decreasing along several finite
trajectories starting from different initial conditions, it should
also decrease along every other trajectory. Then, once a
Lyapunov function candidate is constructed, this intuition
is put to test by verifying the candidate function either via
off-the-shelf tools as in [22] and [13], or via sampling-based
techniques as in [4]. This also relates to the notion of almost-
Lyapunov functions introduced in [16], which presents a
relaxed notion of stability proved via Lyapunov functions
decreasing everywhere except on a small set. Note that, since
we do not have access to the dynamics, these approaches
cannot be directly applied to black-box systems. However,
these ideas raise the following problem that we address in
this paper: By observing that a candidate Lyapunov function
decreases on a large number of observations, we empirically
build a certain confidence that such candidate Lyapunov
function is a bona-fide Lyapunov function. Can we translate
this into a confidence on the stability of the system, that is, that
all points in the state space converge to zero asymptotically?

As we illustrate next, this translation is nontrivial even
in the case of linear systems. In particular, even though a
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Fig. 1. A simple dynamics and the level set of an “almost Lyapunov
function”. Even though this function decreases at almost all points in its
level set, almost all trajectories diverge to infinity.

candidate Lyapunov function is decreasing almost everywhere
on its level sets, all state trajectories might be converging to
infinity asymptotically. Indeed, consider the simple following
2-dimensional system:

x+ =

[
0.14 0

0 1.35

]
x,

which admits the Lyapunov function candidate V (x) = xTx
on the unit circle except on the two red areas shown in Fig.
1. Moreover, the size of this “violating set" can be made
arbitrarily small by changing the magnitude of the unstable
eigenvalue. Nevertheless, the only trajectories that do not
diverge to infinity are those starting on the stable eigenspace
(the abscissa axis) that has zero measure.

In this paper, we start our quest to infer stability by
constraining ourselves to the study of unknown switched
linear systems, where we assume to only know the dimension
of the system, n, and the number of modes, m. Note that,
identifying and deciding stability of arbitrary switched linear
systems is NP-hard [12]. The stability of switched systems
is closely related to the joint spectral radius (JSR) of the
matrices modeling the dynamics in each mode. Deciding
stability amounts to deciding whether the JSR is less than
one [12]. We present an algorithm to bound the JSR of an
unknown switched linear system from a finite number N of
observations. This algorithm partially relies on tools from the
random convex optimization literature (also known as chance-
constrained optimization, see [6], [7], [17]), and provides
an upper bound on the JSR with a user-defined confidence
level. As N increases, this bound gets tighter. Moreover, with
a closed form expression, we characterize the exact trade-
off between the tightness of this bound and the number of
observations made. In order to assess the quality of our upper
bound, we also provide a deterministic lower bound. Finally,
we provide an asymptotic guarantee on the gap between the
upper and the lower bound, for large N .

The organization of the paper is as follows: In Section II,
we introduce notations and provide the necessary background
in stability of switched systems. In Section III, we present a
deterministic lower bound for the JSR. Section IV presents
the main contribution of our work, where we provide a
probabilistic stability guarantee for a given switched system,

based on finite observations. We experimentally demonstrate
the performance of the presented techniques in Section V and
conclude in Section VI, while hinting at our related future
work.

II. PRELIMINARIES

A. Notation

We consider the usual finite normed vector space (Rn, `2),
n ∈ N>0, with `2 the classical Euclidean norm. We denote
the set of linear functions from Rn to Rn by L(Rn), and the
set of real symmetric matrices of size n by Sn. In particular,
the set of positive definite matrices is denoted by Sn++. We
write P � 0 to state that P is positive definite, and P � 0 to
state that P is positive semi-definite. Given a set X ⊂ Rn,
we denote by XN the set of all possible sequences (xn)n∈N,
xn ∈ X . For any r ∈ R>0, we write rX := {rx : x ∈ X} to
denote the scaling of this set. We denote by B (respectively
S) the ball (respectively sphere) of unit radius centered at
the origin in Rn. For any A ⊂ S, the sector of B defined
by A and denoted by SA is the set {tA, t ∈ [0, 1]} ⊂ B.
We denote the ellipsoid described by the matrix P ∈ Sn++ as
EP , i.e., EP := {x ∈ Rn : xTPx = 1}. Finally, we denote
the spherical projector on S by ΠS := x/‖x‖.

We consider in this work the classical unsigned and finite
uniform spherical measure on S, denoted by σ. It is associated
to BS, the spherical Borelian σ-algebra, and is derived from
the Lebesgue measure λ. We have BS defined by

A ∈ BS ⇐⇒ SA ∈ BRn .

The spherical measure σ is defined by ∀ A ∈ BS,
σ(A) = λ(SA)

λ(B) . Notice that σ(S) = 1.
For m ∈ N>0, we denote by M the set M = {1, 2, . . . ,m}.

The set M is provided with the classical σ-algebra associated
to finite sets: ΣM = ℘(M), where ℘(M) is the powerset of
M . We consider the uniform measure µM on (M,ΣM ).

We define Z = S×M as the Cartesian product of the unit
sphere and M . We denote the product σ-algebra BS

⊗
ΣM

generated by BS and ΣM : Σ = σ(π−1S (BS), π−1M (ΣM )),
where πS : Z → S and πM : Z → M are the standard
projections. On this set, we define the product measure
µ = σn−1 ⊗ µM . Note that, µ is a uniform measure on
Z and µ(Z) = 1.

B. Stability of Switched Linear Systems

A switched linear system with a set of modes
M = {Ai, i ∈M} is a time-varying discrete-time system
of the form:

xk+1 = f(k, xk), (2)

with f(k, xk) = Aτ(k)xk and τ ∈ MN is the switching
sequence. There are four important properties of switched
linear systems that we exploit in this paper.

Property 2.1: Let ξ(x, k, τ) denote the state of the system
(2) at time k starting from the initial condition x and
with switching sequence τ . The dynamical system (2) is
homogeneous: ξ(γx, k, τ) = γξ(x, k, τ).
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Property 2.2: The dynamics given in (2) is convexity-
preserving, meaning that for any set of points X ⊂ Rn,
at any time k, we have:

f(k, convhull (X)) ⊂ convhull (f(k,X)).

The joint spectral radius of the set of matricesM describes
the worst case stability of the system (2) and is defined as
follows:

Definition 2.1 (from [21], [12]): Given a finite set of ma-
trices M⊂ Rn×n, its joint spectral radius (JSR) is given
by

ρ(M) = lim
k→∞

max
i1,...,ik

{
||Ai1 . . . Aik ||1/k : Aij ∈M

}
.

This quantity is always well defined and finite.

In the following, by stability we mean uniform asymptotic
stability.

Property 2.3 (Corollary 1.1, [12]): Given a finite set of
matrices M, the corresponding switched dynamical system
is stable if and only if ρ(M) < 1.

Property 2.4 (Proposition 1.3, [12]): Given a finite set of
matrices M, and any invertible matrix T , we have ρ(M) =
ρ(TMT−1), i.e., the JSR is invariant under similarity trans-
formations (and is a fortiori a homogeneous function: ∀γ > 0,
ρ (M/γ) = ρ(M)/γ.

III. A DETERMINISTIC LOWER BOUND FOR THE JSR

We start by computing a lower bound for ρ which is based
on the following theorem from the switched linear systems
literature.

Definition 3.1: Consider a finite set of matrices M ⊂
Rn×n. A common quadratic form (CQF) for a system (2)
with set of matricesM, is a positive definite matrix P ∈ Sn++

such that for some γ ≥ 0,

∀A ∈M, ATPA � γ2P. (3)
CQFs are useful because they can be computed, when they
exist, with semidefinite programming (see [5]), and they
constitute a stability guarantee (when γ < 1, they are
Lyapunov functions) for switched systems as we formalize
next.

Theorem 3.1: [12, Theorem 2.11] For any finite set of
matrices M⊂ Rn×n such that ρ(M) < 1√

n
, there exists a

Common Quadratic Form (CQF) with γ = 1 for M, that is,
a P � 0 such that:

∀ A ∈M, ATPA � P. (4)

Theorem 3.2: [12, Prop. 2.8] Consider a finite set of
matrices M. If there exist a γ ≥ 0 and P � 0 such that
∀ A ∈M, ATPA � γ2P , then ρ(M) ≤ γ.

Note that the smaller γ is, the tighter is the upper bound
we get on ρ(M). In order to properly analyze our setting,
where the matrices are unknown, let us reformulate (4) in
another form. We can consider the optimal solution γ∗ of

the following optimization problem:

minγ,P γ

s.t. (Ax)TP (Ax) ≤ γ2xTPx, ∀ A ∈M, ∀x ∈ Rn,
P � 0.

(5)

Thanks to Property 2.1, this problem is equivalent to

minγ,P γ

s.t. (Ax)TP (Ax) ≤ γ2xTPx, ∀ A ∈M, ∀x ∈ S,
P � 0.

(6)

One can now see a formalization of our problem (6): our
goal amounts to finding a solution to a convex problem with
an infinite number of constraints, while only sampling a finite
number of them.

Even though this upper bound is more difficult to obtain in
a black-box setting where only a finite number of observations
are available, in this section we leverage Theorem 3.1 in order
to derive a straightforward lower bound. Indeed, the following
theorem shows that the existence of a finite minimum for
Program (6), given N arbitrarily drawn pairs (xi, ji) ∈ Z,
where i ∈ {1, . . . N}, allows to retrieve a lower bound on the
JSR of the system. Recall that in our setting, we assume that
we only observe pairs of the form (xi, yi), but we do not
observe the mode applied to the system during this time step,
i.e., the values taken by the switching sequence. Modes are
supposed to be randomly drawn by the system, according to a
uniform law. The user does not have access to this process nor
its outcomes. The assumption of the uniform law is discussed
with its possible relaxations in [14]. The user’s knowledge
is limited to the number of modes and the dimension of the
system (or an upper bound on this number).

Theorem 3.3: For a given uniform sampling:

ωN := {(x1, j1), (x2, j2), . . . , (xN , jN )} ⊂ Z,

let WωN
= {(x1, y1), . . . , (xN , yN )} be the corresponding

available observations, which can be rewritten as

yi = Ajixi ∀(xi, yi) ∈WωN
.

Also let γ∗(ωN ) be the optimal solution of the following
optimization problem:

minγ,P γ

s.t. yTi Pyi ≤ γ2xTi Pxi, ∀(xi, yi) ∈WωN

P � 0.

(7)

Then, we have ρ(M) ≥ γ∗(ωN )√
n

.
Note that, (7) can be efficiently solved by semidefinite
programming and bisection on the variable γ (see [5]).
Proof: Let ε > 0. By definition of γ∗, there exists no
matrix P ∈ Sn++ such that:

(Ax)TP (Ax) ≤ (γ∗(ωN )− ε)2xTPx,∀x ∈ Rn,∀A ∈M.

By Property 2.4, this means that there exists no CQF for the
scaled set of matrices M

(γ∗(ωN )−ε) . Then, using Theorem 3.1,
we conclude:

ρ(M)

γ∗(ωN )
≥ 1√

n
.
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IV. A PROBABILISTIC STABILITY GUARANTEE

In this section, we analyze a somehow converse result to
Theorem 3.3. We consider a finite uniform random sampling
of constraints ωN , and γ∗(ωN ) the optimal solution of
Problem 7 as defined in Section 3. In our proof, for technical
reasons that will become clear later, we look at the slightly
more involved optimization problem, denoted by Opt(ωN ):

minP λmax(P )

s.t. (Ajx)TP (Ajx) ≤ γ∗(ωN )
2
xTPx,

∀(x, j) ∈ ωN ⊂ Z,
P � I.

(8)

We denote its optimal solution by P (ωN ), and drop the
explicit dependence of P on ωN when it is clear from the
context. Feasibility and other considerations on this optimiza-
tion problem are examined in [14]. From the relationship
between this problem and Problem 6, we show how to
compute an upper bound on ρ, with a user-defined confidence
β ∈ [0, 1). We do this by constructing a CQF which is valid
with probability at least β.

We start with a classical result from random convex
optimization literature, which we adapt to our problem below:

Theorem 4.1 (adapted from Theorem 3.3, [6]): Consider
the optimization problem Opt(ωN ) given in (8), where ωN
is a uniform random sampling of the set Z. Let d = n(n+1)

2
be the dimension of the decision variable P of Opt(ωN ) and
N ≥ d+ 1. Then, for all ε ∈ (0, 1] the following holds:

µN
{
ωN ∈ ZN : µ(V (ωN )) ≤ ε

}
≥ 1−

d∑
j=0

(
N

j

)
εj(1−ε)N−j ,

where µN denotes the product probability measure on ZN ,
and V (ωN ) is defined by

V (ωN ) = {(x, j) ∈ Z :

(Ajx)TP (ωN )(Ajx) > γ∗xTP (ωN )x},

i.e., it is the set of constraints of Problem 6 that are violated
by the optimal solution of Opt(ωN ).

Theorem 4.1 states that the optimal solution of the sampled
problem Opt(ωN ) violates no more than an ε fraction of the
constraints in the original optimization problem (6) with
probability β, where β goes to 1 as N goes to infinity. This
means that, the ellipsoid computed by Opt(ωN ) is “almost
invariant" except for a set of measure ε.

We are now able to state the main theorem of this paper. For
a given level of confidence β, we prove that the upper bound
γ∗(ωN ), which is valid solely on finitely many observations,
is in fact a true upper bound, at the price of increasing it by
the factor 1

δ(β,ωN ) . Moreover, as expected, this factor gets
smaller as we increase N and decrease β.

Theorem 4.2: Consider an n-dimensional switched linear
system as in (2) and a uniform random sampling ωN ⊂ Z,
where N ≥ n(n+1)

2 + 1. Let γ∗ = γ∗(ωN ) be a feasible
solution to (7). Then, for any given β ∈ [0, 1), we have
with probability at least β, ρ ≤ γ∗

δ , where ρ is the JSR

of the system and δ(ε̃) =
√

1− I−1(2ε̃; n−12 , 12 ), with I

the regularized incomplete beta function [18, Section 6.6.2].
Moreover, limN→∞ δ(β, ωN ) = 1 with probability 1.
We only sketch the main reasoning of the proof here, because
of space constraints. A complete version of the proofs can
be found in [14].

Proof: Let us consider a uniform random sampling
ωN ⊂ Z as in the statement of the theorem. We first suppose
that the optimal solution of (8) is the unit sphere, i.e., P = I .
By exploiting Property 2.2, we show how one can compute
an upper bound on the JSR in this particular case. In the
claim below, S′ represents the set of ‘bad points’, that is, the
small set of points that violate the constraints, because we
only know of finite sampling of these (recall that Theorem
4.1 precisely gives us a bound ε on the measure of this set
S′).

Claim 1 Let ε ∈ (0, 1] and γ ∈ R>0. Consider the set of
matrices M and A ∈M satisfying:

(Ajx)T (Ajx) ≤ γxTx, ∀x ∈ S \ S′,∀ j ∈,M, (9)

where S′ ⊂ S and σ(S′) ≤ ε, then we have:

ρ(M) ≤ γ

α(ε)

for some computable function α(ε).
See [14, Equation 29] for a closed-form formula for the

function α(·). The rationale behind the above claim is that
Equation (9) combined with Property 2.2 is not only valid
for (S \ S′), but actually for the whole convex hull, that is:

Aj convhull (S \ S′) ⊂ convhull (Aj(S \ S′)) ⊂ γB.

Thus, if one could find a number α such that convhull (S \
S′) ⊂ B/α, one would obtain a bound on the JSR. This is
actually possible, as soon as one has a bound on the measure
of S′, as claimed below:

Claim 2 For any ε > 0, there exists a closed-form
expression for the function

α(ε) := sup
X∈Xε

{r : rB ⊂ convhull (S \X)}, (10)

where Xε = {X ⊂ S : σ(X) ≤ ε}. The proof is geometric,
and can be found in [14, Proposition 2].

We now know how to compute an upper bound on the JSR
when the “almost invariant" ellipsoid, solution to Equation (8)
is the sphere S. If, on the contrary, this set is a non-spherical
ellipsoid EP , then thanks to Property 2.4, we can simply
perform a change of coordinates mapping this ellipsoid to S
and compute the JSR in the new coordinates system instead.
In order to do this, in the next claim, we bound the measure
of violating constraints on S after the change of coordinates,
in terms of the measure of the violated constraints on S in
the original coordinates.

Claim 3 Let γ ∈ R>0. Consider a set of matrices A ∈M,
and a matrix P � 0 satisfying:

(Ajx)TP (Ajx) ≤ γ2xTPx, ∀ (x, j) ∈ Z \ V, (11)
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for some V ⊂ Z where µ(V ) ≤ ε. Then, denoting L ∈ Rn×n
such that L−TPL = I, and Āj = L−1AjL, one also has:

(Ājx)T (Ājx) ≤ γ2xTx, ∀x ∈ S \ S′,∀ j ∈M,

where S′ ⊂ S is such that σ(S′) ≤ mεκ(P ), and

κ(P ) =

√
det(P )

λmin(P )n
.

In the above claim, λmin(P ) denotes the minimal eigenvalue
of P. The proof of Claim 3 proceeds by elementary geometry
of Rn. Again the details can be found in [14]. Now, by
taking L equal to the change of coordinate mapping the
non-spherical ellipsoid EP to the sphere, one obtains a new
system which satisfies the conditions in Claim 1, together
with a bound on the measure of the violating set for this new
system.

We now summarize our proof by putting together all the
above pieces. For a given level of confidence β, we obtain a
solution P to Problem (6), which is valid for almost all points,
except for a measure ε. We apply a change of variables to
our matrices without changing the JSR to be computed, and
we now have a set which solves Problem (6) with a solution
I (that is, the ‘almost’ invariant set is the sphere) and the
same γ, for all points except a set of measure mεκ(P ).
We can thus apply Claim 1 and deduce a bound (with level
of confidence β) on the JSR for our set equal to γ

α(mεκ(P )) ,
and the proof is done.

V. EXPERIMENTAL RESULTS

We illustrate our technique on a two-dimensional switched
system with 4 modes. We fix the confidence level, β = 0.92,
and compute the lower and upper bounds on the JSR for
N := 15 + 15k, k ∈ {0, . . . , 23}, according to Theorem 3.3
and Theorem 4.2, respectively. We illustrate the average
performance of our algorithm over 10 different runs in Fig. 2
and Fig. 3. Fig. 2 shows the evolution of δ(β,N) as N
increases. We illustrate that δ converges to 1 as expected. In
Fig. 3, we plot the upper bound and lower bound for the JSR
of the system computed by Theorem 4.2 and Theorem 3.3,
respectively. To demonstrate the performance of our technique,
we also provide the JSR approximated by the JSR toolbox
[23], which turns out to be 0.7727. Note that, the plot for
the upper bound starts from N = 45. This is due to the fact
for N = 15, and N = 30, δ(β, ωN ) = 0, hence it is not
possible to compute a nontrivial upper bound for these small
values of N . As can be seen, the upper bound approaches
to a close vicinity of the real JSR with approximately 200
samples. In addition, the gap between the upper and lower
bound converges to a multiplicative factor of ρ√

n
as expected.

Note that, if we increase the dimension of the switched
system, the convergence of δ to 1 will become much slower.
We confirmed this via experiments up to dimension n = 6.
For example, for dimension n = 4, it took N = 5, 000 to
N = 10, 000 points to reach δ = 0.9. We nevertheless observe
convergence of the upper bound to ρ(M), and convergence
of the lower bound to ρ(M)√

n
. The gap between these two

Fig. 2. Evolution of δ with increasing N .

Fig. 3. Evolution of the upper and lower bounds on the JSR with increasing
N , for β = 0.92.

limits is ρ√
n

and could be improved by considering a more
general class of common Lyapunov functions, such as those
that can be described by sum-of-squares polynomials [19].
We leave this for future work.

Finally, we randomly generate 10, 000 test cases with
systems of dimension between 2 and 7, number of modes
between 2 and 5, and size of samples N between 30 and 800.
We take β = 0.92 and we check if the upper bound computed
by our technique is greater than the actual JSR of the system.
We get 9873 positive tests, out of 10, 000, which gives us a
probability of 0.9873 of the correctness of the upper bound
computed. Note that, this probability is significantly above
the provided β. This is expected, since our techniques are
based on worst-case analysis and thus fairly conservative.

VI. CONCLUSIONS AND POSSIBLE EXTENSIONS

In this paper, we investigated the question of how one
can conclude stability of a dynamical system when a model
is not available and, instead, we only observe randomly
generated state measurements. Our goal is to understand
how the observation of well-behaved trajectories intrinsically
implies stability of a system. It is not surprising that we need
some standing assumptions on the system, in order to allow
for any sort of nontrivial stability certificate solely from a
finite number of observations. Even if we focused on a black
box setting, our technique can still be used as a randomized
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algorithm to evaluate the JSR when a model of the system
is known.

The novelty of our contribution is threefold.
First, we apply powerful techniques from chance constrained
optimization. The application is not obvious, and relies on
geometric properties of linear switched systems. In our view,
the obtained guarantee is quite powerful, in view of the
hardness of the general problem.
Second, we use as standing assumption that the unknown
system can be described by a switching linear system. This
assumption covers a wide range of systems of interest, and to
our knowledge no such “black-box” result has been available
so far on switched systems. We believe that our work opens up
a new direction in general, by showing that chance-constrained
optimization and the so-called scenario approach can be
used for other purposes than to provide a confidence of the
measure of possible bad scenarios. Indeed we show that these
results can be converted into actual intrinsic global stability
properties for the complete system. In particular, this approach
is new within the field of switched systems: to the best of
our knowledge, randomness has never been considered in
this aspect in the field. Situations where the switching signal
comes from a random process (see e.g. Markov Jump Linear
Systems [8], or the Lyapunov Exponent of a switched system
[20]) have been studied, but this is a completely different
issue from the one addressed here.
Third, we present a hypothesis testing result for stability
of complex systems, which is also new to the best of our
knowledge.

Let us end this paper by mentioning a few possible
generalizations of our work that we find promising.
First, we have restricted our attention to observations of the
type (xt, xt+1), that is, trajectories of length one. It is well
known in the switched systems literature that one can refine
the computation of the JSR by considering longer trajectories,
that is, observations of the type xt, . . . , xt+L for some L.
One could then apply this ‘iterated technique’ in order to
refine the bounds obtained in this paper. See our Technical
Report [14] for results in that direction.
Second, a key step in our main theorem consists in making
a change of variables, in order to transform the computed
ellipsoid into a sphere. This incurs a loss of accuracy of our
bound. This loss could be alleviated if one knew in advance
the solution-ellipsoid, and could then adapt the sampling
accordingly. We would like to develop an adaptive learning
algorithm that would allow to modify the sampling strategy
online, while collecting observations.
Third, we firmly believe that the methodology applied here
to switched systems could be generalized to other, general
nonlinear, systems. Indeed, as pointed out above, we only
make use here of general and natural geometric properties of
switched systems (see in particular Properties 2.1 and 2.2).
Finally, we would like to investigate how these ideas can be
translated to probabilistic analysis of computerized systems,
as for instance the termination, or convergence, of computer
software.
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